Рождественская сказка AMD. Обзор и тестирование видеокарты Radeon HD 7970

Direct3d 10: тесты геометрических шейдеров

В пакете RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующие частицу. Аналогичные алгоритмы должны получить широкое использование в будущих играх под DirectX 10.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления — в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трёх уровней геометрической сложности:

Соотношение скоростей при разной геометрической сложности сцен примерно одинаково для всех решений, производительность соответствует количеству точек, с каждым шагом падение FPS составляет около двух раз. Задача для современных видеокарт не слишком сложная, и производительность ограничена в основном скоростью обработки геометрии, но ещё и пропускной способностью памяти/филлрейтом (в рамках решений одного производителя).

В этом тесте должны были проявиться улучшенные возможности Southern Islands по обработке геометрии, вот они и проявились. Новая видеокарта AMD действительно гораздо быстрее выполняет геометрические расчёты, по сравнению со всеми предыдущими решениями компании. Хотя AMD дала цифры прироста до 4 раз, но в этом тесте геометрическая производительность выросла примерно в 1,5-2 раза. В итоге, одночиповая видеокарта оказалась примерно на том же уровне, что и двухчиповая модель Radeon HD 6990 на GPU предыдущего поколения.

Столь значительное улучшение привело к тому, что Tahiti практически догнала топовую видеокарту Nvidia, хотя выполнение геометрических шейдеров у той в некоторых условиях должно быть ещё эффективнее. Ранее видеокарты Nvidia справлялись с работой примерно вдвое быстрее аналогичных видеокарт конкурента, а теперь разницы совсем нет. Посмотрим, как изменится ситуация при переносе части вычислений в геометрический шейдер:

При изменении нагрузки в этом тесте цифры почти не изменились для решений Nvidia и большинства плат AMD. Лишь новая видеокарта из семейства HD 7900 в данном тесте слабо отреагировала на изменение параметра GS load, отвечающего за перенос части вычислений в геометрический шейдер. Поэтому плата показала результат чуть выше, чем на предыдущей диаграмме. Посмотрим, что изменится в следующем тесте, который предполагает большую нагрузку именно на геометрические шейдеры.

«Hyperlight» — это второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load. В нем используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 — stream output. Первый шейдер генерирует направление лучей, скорость и направление их роста, эти данные помещаются в буфер, который используется вторым шейдером для отрисовки. По каждой точке луча строятся 14 вершин по кругу, всего до миллиона выходных точек.

Новый тип шейдерных программ используется для генерации «лучей», а с параметром «GS load», выставленным в «Heavy» — ещё и для их отрисовки. То есть в режиме «Balanced» геометрические шейдеры используются только для создания и «роста» лучей, вывод осуществляется при помощи «instancing», а в режиме «Heavy» выводом также занимается геометрический шейдер. Сначала рассматриваем лёгкий режим:

Предлагаем ознакомиться  Сколько всего вирусов?. Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина

Относительные результаты в разных режимах снова примерно соответствуют изменению нагрузки: во всех случаях производительность неплохо масштабируется и близка к теоретическим параметрам, по которым каждый следующий уровень «Polygon count» должен быть менее чем в два раза медленней.

В этом тесте скорость рендеринга должна быть ограничена геометрической производительностью, и новая архитектура от компании AMD показывает себя просто отлично, даже немного обгоняя конкурента в лице Geforce GTX 580! Обе двухчиповые платы тут показали некорректные результаты, поэтому с ними сравнения не получится.

Цифры должны сильно измениться на следующей диаграмме, в тесте с более активным использованием геометрических шейдеров. Также будет интересно сравнить друг с другом результаты, полученные в режимах «Balanced» и «Heavy».

А вот тут рекорда у Radeon HD 7970 не получилось, всё-таки разница между чипами AMD с традиционным графическим конвейером (в т. ч. и Cayman с Tahiti с двумя растеризаторами) и чипами с архитектурой Fermi, имеющей распараллеленную обработку геометрии, хорошо заметна. И результаты Geforce GTX 580, имеющей в своей основе чип GF110, хороши настолько, что она обгоняет лучшее из решений компании AMD (а это анонсированная сегодня модель) на 35-40%.

Хотя возможности новенького топового чипа AMD по обработке геометрии и скорости исполнения геометрических шейдеров явно выросли по сравнению с предыдущими видеокартами компании, и первое решение на чипе Tahiti показывают в этих тестах результаты на 22-28% выше, чем решения на базе Cayman. Вероятно, инженеры AMD решили, что такой оптимизации блоков установки треугольников и обработки геометрии будет вполне достаточно.

Direct3d 10: тесты пиксельных шейдеров ps 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций, и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест — Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

Результаты предельных математических тестов обычно соответствуют разнице в частотах и количестве исполнительных блоков, но с некоторым влиянием разной эффективности их использования. Все последние архитектуры AMD в таких случаях имеют подавляющее преимущество перед конкурирующими видеокартами Nvidia, и это объясняет результаты тестов, в которых решения AMD снова оказываются значительно более производительными.

Решения расположились примерно соответственно теории, но за некоторыми исключениями. На практике открылись некоторые нюансы, связанные с различной эффективностью. Теоретически, Geforce GTX 580 должна быть более чем вдвое (2,4 раза) медленнее, чем новая модель Radeon HD 7970, на практике же разница составляет лишь 80%, что значительно меньше.

Да и при сравнении с HD 6970 возникают вопросы оптимизации новой архитектуры и драйверов для неё к этому тесту. При теоретическом превосходстве по вычислениям в 40%, новая плата AMD лишь на 28% быстрее предыдущей — HD 6970, а ещё меньше дистанция между ней и совсем старой HD 5870, основанной на VLIW5-архитектуре. То ли тест действительно лучше подходит для VLIW (особенно для VLIW5), то ли виноваты ещё сырые драйверы.

Есть и ещё одно объяснение — возможно, на результаты плат HD 7970 HD 6970 в этом тесте повлияла технология PowerTune, снизившая частоты при достижении предела энергопотребления. Впрочем, всё это мало что меняет при сравнении с конкурентом, ведь даже дорогущая двухчиповая плата Geforce GTX 590 лишь достигла уровня HD 6970 и HD 5870. А уж одночиповая GTX 580 так и вовсе далеко позади.

Предлагаем ознакомиться  Intel® Software Development Emulator

Рассмотрим второй тест шейдерных вычислений, который носит название Fire. Он тяжелее для ALU, и текстурная выборка в нём только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

Мы видим почти идентичную предыдущей диаграмму, за исключением абсолютных цифр. В этот раз все GPU остались примерно на тех же позициях, ну разве что видеоплаты на базе Cayman и Cypress поменялись местами — теперь чуть-чуть быстрее более новая модель, но совсем незначительно. Хотя строгого соответствия теоретическим цифрам пиковой производительности всё так же нет, но их результаты всё-таки близки к сухой теории. Разница между HD 7990 и HD 6970 немного увеличилась.

В остальном, мы не нашли на графике ничего нового. Скорость рендеринга в этом тесте ограничена исключительно производительностью шейдерных блоков и их эффективностью, поэтому двухчиповая HD 6990 снова стала явным лидером, а за ней на приличном отдалении следует сегодняшняя новинка от AMD. Обе платы Geforce уступают даже устаревшей модели из семейства Radeon HD 5800, но и в этот раз преимущество решений AMD остаётся несколько меньшим, чем при сравнении теоретических цифр, и это снова говорит о худшей оптимизации или влиянии PowerTune.

Direct3d 10: тесты пиксельных шейдеров ps 4.0 (текстурирование, циклы)

Во вторую версию RightMark3D вошли два знакомых теста PS 3.0 под Direct3D 9, которые были переписаны под DirectX 10, а также ещё два новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Данные тесты измеряют производительность выполнения пиксельных шейдеров с циклами при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нём используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail — «High» увеличивает количество выборок до 40—80, включение «шейдерного» суперсэмплинга — до 60—120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» — от 160 до 320 выборок из карты высот.


Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Производительность в этом тесте зависит от количества и эффективности блоков TMU, и от эффективности выполнения сложных программ. В варианте без суперсэмплинга дополнительное влияние на производительность оказывает эффективный филлрейт (производительность ROP) и пропускная способность памяти. Результаты при детализации уровня «High» получаются примерно в полтора раза ниже, чем при «Low», как и должно быть по теории, но для быстрейших решений разница несколько ниже.

Ранее в тестах процедурной визуализации меха с большим количеством текстурных выборок решения Nvidia были заметно сильнее, но начиная с предыдущего поколения компании AMD, разница начала сокращаться. Что же получилось у Radeon HD 7970? Отличный результат — новинка AMD снова оказалась быстрее двухчиповой платы предыдущего поколения, а одночиповая HD 6970 отстала вдвое, что явно говорит об увеличении эффективности новой архитектуры Southern Islands. Да и решения компании Nvidia остались позади, даже двухчиповая GTX 590 уступила представленной сегодня топовой модели Radeon HD 7970.

Предлагаем ознакомиться  Скачать уход за батареей cheetah mobile. Как правильно ухаживать за батареей телефона развенчание мифов. Нужны ли на самом деле такие приложения

Посмотрим на результат этого же теста, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза: возможно, в такой ситуации что-то изменится, и ПСП с филлрейтом будут влиять меньше:

Включение суперсэмплинга увеличивает теоретическую нагрузку в четыре раза, и результаты решений Nvidia всегда падают, по сравнению с показателями видеокарт AMD. Теперь разница в эффективности выполнения данной задачи ещё более очевидна, и новая модель HD 7970 быстрее HD 6970 в 2,5 раза! Примерно столько же новинке уступила и Geforce GTX 580. Вполне естественно, что даже HD 6990 осталась далеко позади, а новая плата укрепила лидерство, да какое…

Второй шейдерный DX10-тест измеряет производительность исполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок и называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза.

Второй пиксель-шейдерный тест Direct3D 10 несколько интереснее с практической точки зрения, так как разновидности parallax mapping широко применяются в играх, а тяжелые варианты, вроде нашего steep parallax mapping используются во многих проектах, например в играх серий Crysis и Lost Planet. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип примерно в два раза, такой режим называется «High».

Эта диаграмма похожа на предыдущую без включения SSAA, но позиции Nvidia ещё немного ослабли, да и Radeon HD 6990 почти догнала представленную сегодня модель. В обновленном D3D10-варианте теста без суперсэмплинга HD 7970 показывает отличный результат, значительно опережая и HD 6970 и GTX 580 и даже GTX 590.

При включении суперсэмплинга и самозатенения, задача получается ещё более тяжёлой, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая большое падение производительности. Разница между скоростными показателями протестированных видеокарт изменилась, включение суперсэмплинга сказывается, как и в предыдущем случае — карты производства AMD улучшили свои показатели относительно решений Nvidia.

И теперь Radeon HD 7970 снова становится единоличным лидером сравнения, показывая результаты выше, чем у HD 6990. Более старые одночиповые платы компании далеко позади, вместе с ними и Geforce GTX 580. И лишь более дорогие двухчиповые варианты от AMD и Nvidia способны хоть как-то приблизиться к свежей видеоплате.

Установка и драйверы

Конфигурация тестового стенда:

  • Компьютер на базе Intel Core i7-975 (Socket 1366)
    • процессор Intel Core i7-975 (3340 МГц);
    • системная плата Asus P6T Deluxe на чипсете Intel X58;
    • оперативная память 6 ГБ DDR3 SDRAM Corsair 1600 МГц;
    • жесткий диск WD Caviar SE WD1600JD 160 ГБ SATA;
    • блок питания Tagan TG900-BZ 900 Вт.
  • операционная система Windows 7 64-битная; DirectX 11;
  • монитор Dell 3007WFP (30″);
  • драйверы AMD версии Catalyst 11.12; Nvidia версии 290.36

VSync отключен.

Оцените статью
Техничка
Adblock detector