Как разогнать процессор

Вступление

В этом материале будет дано общее руководство по разгону процессоров Intel Core с архитектурой Haswell для сокета LGA 1150.

Ранее в лаборатории уже были проведены различные тесты по разгону Haswell:

После прочтения вышеуказанных статей у начинающих или даже опытных оверклокеров могут возникнуть вопросы: «С чего лучше начать разгон Haswell серии К?» и «Какая последовательность действий необходима при разгоне Haswell серии К?» Ответы на эти и другие вопросы даются ниже в формате более простого изложения уже накопленного на данный момент опыта участников форума и результатов тестов лаборатории.

Что мы получим после разгона процессора?

Каждый процессор имеет разный потенциал разгона. Core i5-10600K мне удалось разогнать до 5000 МГц (50х100 МГц) при напряжении питания 1,35 В. Как это повлияло на производительность? я провёл следующие тесты:

Зависимость производительности от тактовой частоты

Традиционно под разгоном процессора понимают увеличение его тактовой частоты выше номинальной. Собственно, отсюда и термин Overclock, который дословно означает «превышение тактовой частоты».

Современный процессор имеет множество различных характеристик, которые в совокупности и определяют его производительность. Но из всего набора характеристик, влияющих на производительность процессора, пользователь может изменить только одну — тактовую частоту. Есть, конечно, еще возможность заблокировать некоторые функции или отключить использование нескольких ядер процессора, однако это приведет не к росту, а, наоборот, к падению производительности.

Как известно, под производительностью (Performance) процессора принято понимать количество инструкций, выполняемых в единицу времени (Instruction Per Second, IPS) и при таком определении производительность процессора должна быть прямо пропорциональна его тактовой частоте (F) и количеству инструкций, выполняемых за один такт (Instruction Per Clock, IPC), то есть: Performance=F×IPC

Соответственно, существует и два принципиально разных подхода к увеличению производительности процессора. Первый из них заключается в увеличении тактовой частоты, а второй — в увеличении IPC. Однако пользователю доступен лишь первый подход, то есть увеличение тактовой частоты, поскольку IPC определяется микроархитектурой процессора, количеством ядер, размером кэшей и другими не поддающимися изменению со стороны пользователя характеристиками процессора.

Каждый процессор, в силу технологических особенностей производства, имеет определенный запас по тактовой частоте, который как раз и можно использовать для разгона. Максимальное значение тактовой частоты процессора, как правило, ограничивается его предельно допустимым энергопотреблением и температурой, однако может ограничиваться и особенностями кристалла процессора, когда критические значения температуры и энергопотребления еще не достигнуты, но транзисторы уже не могут переключаться на заданной тактовой частоте.

Зависимость энергопотребления от тактовой частоты

Зависимость энергопотребления процессора от его тактовой частоты и напряжения питания достаточно простая: P=F×U²×C. То есть мощность, потребляемая процессором, прямо пропорциональна тактовой частоте (F), квадрату напряжения питания процессора (U) и его так называемой динамической емкости (C).

Предлагаем ознакомиться  Черный экран при включении компьютера

Проблема осложняется тем, что увеличение тактовой частоты процессора выше некоторого значения требует и увеличения напряжения питания, и получается, что после некоторого значения частоты потребляемая процессором мощность зависит от частоты процессора нелинейным образом (практически, пропорционально третьей степени частоты).

Естественно, потребляемая процессором мощность выделяется в виде тепла, и это тепло нужно отводить от процессора, дабы он не перегрелся, а потому разгон процессора требует эффективной системы охлаждения. В штатном режиме работы процессора (то есть без разгона) тепловая мощность, которую кулер должен быть в состоянии отвести от него, определяется TDP этого процессора.

То есть TDP процессора определяет ту тепловую мощность, которую кулер должен рассеивать для обеспечения стабильной работы процессора с гарантией того, что он не перегреется даже при максимальной нагрузке. Однако в режиме разгона TDP процессора теряет свой смысл, поскольку тепловыделение становится выше, чем при штатном режиме работы. Соответственно, при разгоне кулер должен отводить от процессора существенно больше тепловой мощности, чем TDP этого процессора.

Ну а теперь рассмотрим основные способы разгона процессоров.

Особенности разгона процессоров семейств sandy bridge, ivy bridge и haswell

Процессоры этих семейств (за исключением младших моделей) поддерживают замечательную технологию динамического разгона Intel Turbo Boost, а кроме того, в семействах этих процессоров имеется «элитная» K-серия полностью разблокированных процессоров, специально ориентированная на разгон.

Напомним, что разгон любого процессора по тактовой частоте возможен двумя способами: либо за счет изменения опорной частоты тактового генератора (BCLK), либо за счет изменения коэффициента умножения.

Разгон изменением коэффициента умножения

Самый простой способ разгона в современных процессорах Intel — это разгон путем изменения коэффициента умножения. Для такого разгона оптимально использовать процессоры K-серии, которые имеют полностью разблокированный коэффициент умножения (Fully Unlocked). Это, правда, не означает, что коэффициент умножения можно выбрать любой: максимальное его значение для процессоров Sandy Bridge составляет 57, то есть максимальная тактовая частота этих процессоров может достигать 5,7 ГГц (при частоте BCLK 100 МГц).

В процессорах Ivy Bridge максимальный коэффициент умножения был повышен до 63, то есть путем изменения коэффициента умножения процессор теоретически можно разогнать до частоты 6,3 ГГц. А в процессорах Haswell максимальный коэффициент умножения составляет 80, что теоретически позволяет разогнать процессор до частоты 8 ГГц (естественно, такие частоты недостижимы при использовании воздушного охлаждения).

Отметим, что поддержка процессорами технологии Intel Turbo Boost делает возможным два способа разгона путем изменения коэффициента умножения. Во-первых, можно заблокировать возможность использования технологии Intel Turbo Boost (если это позволяет сделать BIOS платы) и изменять коэффициент умножения.

Во-вторых, можно не блокировать, а настраивать технологию Intel Turbo Boost (не на любой плате данную технологию можно заблокировать). В этом случае имеется возможность, например, указать для всех вариантов числа активных ядер одинаковый коэффициент умножения — тогда, формально, данный вариант разгона не будет отличаться от предыдущего.

Правда, в данном варианте есть одна особенность. Дело в том, что для реализации технологии Intel Turbo Boost необходимо, чтобы процессор не вышел за рамки установленного значения энергопотребления, максимального значения тока, температуры и некоторых других значений. И только при выполнении всех условий может быть задействована технология Intel Turbo Boost.

Предлагаем ознакомиться  Как узнать сокет оперативной памяти?

Процессоры Sandy Bridge и Ivy Bridge, которые не относятся к К-серии полностью разблокированных процессоров, имеют так называемый частично разблокированный коэффициент умножения (Limited Unlocked). То есть все процессоры Sandy Bridge и Ivy Bridge являются разблокированными, но в меньшей степени, чем процессоры K-серии.

Рассмотрим, к примеру, частично разблокированный процессор Core i5-2400 (Sandy Bridge). Его штатная тактовая частота составляет 3,1 ГГц, а в режиме Turbo Boost максимальная тактовая частота может достигать 3,4 ГГц (при одном активном ядре). Соответственно для этого процессора коэффициент умножения для максимальной частоты в режиме Turbo Boost составляет 34. Значит, максимальный коэффициент умножения, который можно задать, равен 38.

В процессорах Haswell все обстоит несколько иначе. Они могут быть либо полностью разблокированными (процессоры K-серии), либо полностью заблокированными. То есть никаких частично разблокированных процессоров в данном семействе нет, и если процессор Haswell не относится к К-серии, то разогнать его путем изменения коэффициента умножения нельзя.

Разгон изменением частоты bclk

В процессорах Sandy Bridge, Ivy Bridge и Haswell частота BCLK составляет по умолчанию 100 МГц. Собственно, это базовая частота, от которой всё и «пляшет». Частота работы различных модулей процессора (интегрированного графического ядра, контроллера памяти, контроллера шины PCI Express и др.) тактируется этой базовой частотой, однако с использованием множителей, позволяющих изменить эту частоту.

Для процессоров Sandy Bridge и Ivy Bridge минимальное значение коэффициента умножения составляет 16, то есть минимальное значение их тактовой частоты составляет 1,6 ГГц. А вот для новых процессоров Haswell минимальное значение коэффициента умножения составляет 8.

Понятно, что если увеличить опорную частоту, то увеличится и тактовая частота процессора. К примеру, при коэффициенте умножения 35 увеличение опорной частоты на 10 МГц приведет к увеличению тактовой частоты ядер процессора на 350 МГц. Однако нужно понимать, что увеличение опорной частоты приводит к увеличению тактовых частот всех модулей процессора, а не только его ядер, но не все модули процессора (модули Uncore Logic) способны работать на повышенных частотах.

Особенно чувствительны к превышению тактовой частоты контроллеры шин DMI и PEG (контроллер линий PCI Express, используемых для дискретной графики). Поэтому разгон процессоров Sandy Bridge и Ivy Bridge путем увеличения опорной частоты тактового генератора возможен в очень ограниченных пределах (как правило, удается повысить опорную частота не более чем на 5-10 МГц), и основной способ разгона этих процессоров заключается в изменении коэффициента умножения.

В процессорах Haswell для манипуляций с частотой BCLK используется несколько иной подход. Для частоты BCLK введены дополнительно четыре множителя: 1,00, 1,25, 1,66 и 2,55. При установке одного из этих множителей опорная тактовая частота для ядер процессора получается умножением частоты BCLK на соответствующий множитель, а для элементов Uncore Logic — остается неизменной и равной частоте BCLK.

Предлагаем ознакомиться  Чем опасны мы для компьютера

Например, если установлен множитель 1,66, а частота BCLK составляет 100 МГц, то опорная частота для ядер процессора составит 166 МГц, а опорная частота Uncore Logic — 100 МГц.

Кроме того, если задавать опорную частоту для ядер процессора (все зависит от конкретной материнской платы и версии BIOS), то выбор множителей 1,25, 1,66 и 2,55 будет недоступен — они будут устанавливаться автоматически. К примеру, на плате Gigabyte G1.Sniper 5 (BIOS F6f) это происходит это следующим образом.

Если опорную частоту для ядер процессора (в случае платы Gigabyte G1.Sniper 5 она называется CPU Base Clock) повысить до значения 106,01 МГц, то автоматически установится множитель 1,25. Соответственно, опорная частота Uncore Logic (она же частота BCLK) составит 84,80 МГц (106,01 МГц/1,25). Отметим, что в варианте платы плате Gigabyte G1.Sniper 5 частота BCLK называется Host/PCIe Clock Frequency.

Аналогично, если частоту CPU Base Clock повысить до значения 145,01 МГц, то автоматически установится множитель 1,66, а если увеличить до значения 193,34 МГц, то установится множитель 2,5.

Напомним, что аналогичная манипуляция с частотой BCLK была реализована в процессорах Sandy Bridge-E (LGA2020). Казалось бы, введение дополнительных частотных множителей в процессорах Haswell дает им неоспоримое преимущество в плане разгона путем увеличения опорной частоты, на что практически неспособны процессоры Sandy Bridge и Ivy Bridge.

Однако есть одно существенное но, которое сводит на нет все кажущиеся преимущества. Дело в том, что возможность выбора дополнительных частотных множителей реализована только в процессорах К-серии. А вот обычные процессоры Haswell в плане разгона путем увеличения частоты BCLK ничем не отличаются от процессоров Sandy Bridge и Ivy Bridge.

Выводы

Вообще, разгонные возможности процессоров Haswell разочаровывают. То есть нельзя сказать, что эти процессоры не гонятся, однако процессоры Sandy Bridge и Ivy Bridge разгоняются лучше. Еще раз отметим, что мы говорим не об экстремальном разгоне с применением жидкого азота, а об обычном, «бытовом» разгоне с воздушным охлаждением.

Одним из минусов процессоров Haswell является тот факт, что у них не очень качественная система теплоотвода. В результате процессоры перегреваются, но кулер при этом гонит практически холодный воздух, а теплосъемная подошва радиатора кулера остается прохладной. И если процессоры Ivy Bridge можно было разгонять с использованием воздушного охлаждения при напряжении Vcore в диапазоне 1,39–1,40 В, то в случае процессоров Haswell такой фокус не пройдет, поскольку при таких напряжениях процессор мгновенно перегреется.

По всей видимости, проблема заключается в термоинтерфейсе между кристаллом и теплорассеивающей крышкой процессора: процессор перегревается внутри кристалла, не успевая передавать тепло наружу. Фактически, это означает, что какой бы мощный кулер вы ни использовали для разгона процессора, он не поможет, поскольку проблема заключается не в эффективности кулера.

Оцените статью
Техничка
Adblock detector